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using one-range addition theorems of Slater type orbitals
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Abstract By the use of unsymmetrical one-range addition
theorems for Slater type orbitals (STO) and Coulomb
potential introduced by the author, the analytical formulae
in terms of two- and three-center nuclear attraction
integrals, and linear combination coefficients of molecular
orbitals are derived for the potential produced by the
charges of molecule. These formulae can be useful for the
study of interaction between atomic-molecular systems
containing any number of closed and open shells when
the STO are used in the combined Hartree-Fock-Roothaan
(HFR) theory suggested by the author. It should be noted
that the symmetry of the potential obtained is the same as
the symmetry of the molecule. As an example of applica-
tion, the calculations have been performed for the potential
produced by the ground sta te of BH3 mole-
cule 1a1ð Þ2 2a1ð Þ2 1exð Þ2 1ey

� �2
; 1A1

� �
.
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Introduction

In the electronic structure calculations of atoms and
molecules, a natural choice of reliable basis function set is
the exponential type orbitals (ETO) as the behavior of ETO
is close to the exact atomic orbitals. During the past few

years, the Gaussian type orbitals (GTO) are used on a large
scale in calculations. This is motivated by the practical
requirement for easy and rapid evaluation of multicenter
integrals. Unfortunately, the GTO basis functions fail to
satisfy two mathematical conditions for atomic electronic
distributions, namely, the cusp condition at the origin [1]
and exponential decay at long range [2]. ETO would be
desirable for basis sets because they satisfy these con-
ditions. In a previous paper [3], the series of expansion
formulae has been derived for the potential of electric field
produced by the charges of molecule using complete
orthonormal sets of ya-ETO introduced in [4]. The aim of
this work, which presents the development of our previous
papers (see Ref. [3] and references quoted therein), is to
establish the new formulae for the electron-molecule
Coulomb interaction potential using STO basis functions.

Theory

The operator of Coulomb potential for electric field of N-
electron molecule is defined in atomic units by (see Fig.1):

b8 ~rg
� � ¼ b8N ~rg

� �þ b8E ~rg
� �

; ð1Þ

where N and E stand for nuclear and electronic parts,
respectively,

b8N ~rg
� � ¼ X

a

Za
rag

ð2Þ

b8E ~rg
� � ¼ �

XN
i¼1

1

rig
: ð3Þ
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Here, Za is the charge of nucleus a (a≡b, c,…);~rg is the
radius-vector of the point g with respect to the origin of the
molecular coordinate system.

Let ui denote the molecular orbitals of the molecule in its
ground state. The average expectation value of potential
defined by Eq. 1 for multideterminantal single electron
configuration states with any number of closed and open
shells of molecule is then given by (see Refs. [3] and [5]):

8 ~rg
� � ¼ X

a

Za
rag

� 2
Xk
i¼1

fiI
g
i ; ð4Þ

Where k ¼ kc þ k0 is the number of occupied orbitals
of closed (kc) and open (k0) shells, fi is the fractional
occupancy of shell i and

Igi ¼
Z

u
»

i ð~r1Þui ~r1
� � 1

rg1
dv1: ð5Þ

Now we use in Eq. 5 the formula

ui ¼
X
p

#pCpi ð6Þ

for the molecular orbitals in terms of c – STO determined
by

#nlm z;~rð Þ ¼ Rn z; rð Þ Slm q; fð Þ ð7aÞ

Rn z; rð Þ ¼ 2nð Þ!½ ��1=2 2zð Þnþ1=2 rn�1e�zr; ð7bÞ
where Slm (θ, f) are the complex (for Slm≡Ylm) or real
spherical harmonics and ζ > 0 is the orbital exponent. Then,
we obtain
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X
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0
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Here, p1≡n1l1m1, p
0
1 � n
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With the evaluation of multicenter nuclear attraction
integrals 9 we use the following relation for the unsym-

metrical one-range addition theorems established in a
previous paper [6] for the charge density of STO:for one-
center case

#
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for two-center case

#
»

p1
z1;~ra1ð Þ #p 0

1
z

0
1 ;~rc1

� �

¼ 1ffiffiffiffiffi
4p

p lim
N!1

XN
n¼1

Xn�1

l¼0

Xl

m¼�l

W aN
p1p

0
1 p

z1; z
0

1 ; z;~Rca; 0
� �

#
»

p z;~ra1ð Þ;

ð11Þ
where p≡nlm, n ¼ n1 þ n

0
1 � 1, z ¼ z1 þ z

0
1 and a ¼

1; 0;�1;�2; :::; the indices N is a positive integer number.
Taking into account Eqs. 10 and 11 in 9 we obtain:
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where Jp z;~rag

� �
is the two-center basic nuclear-

attraction integral defined as

Jp z;~rag
� � ¼ 1ffiffiffiffiffi
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With the evaluation of integral 14 we use the following
relation established in a previous paper [7]:

Jp z;~rag
� � ¼ ffiffiffiffiffi
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p
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where
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Fig. 1 The position of charges of molecule and point g
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Using Eqs. 8, 12, 13 and 15 in 4, we obtain finally for
the potential the following relation:

See Eqs. 4, 13, 14, and 19 of Ref. [6] for the exact
definition of charge density expansion coefficients
Wp1p

0
1 p z1; z

0
1 ; z

� �
and W aN

p1p1
0p z1; z

0
1 ; z;~Rca; 0

� �
occurring

in these equations.The Coulomb interaction potential 17 can

also be expanded in multipole potentials:
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where
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The evaluation of integral 19 for the radial part of
multipole potentials can be performed using the one-range
addition theorems of STO and Coulomb potential of nuclei
(see Ref [8]). For the multipole expansions of basic nuclear
attraction integrals and Coulomb potential of nuclei occur-
ring in Eqs. 17 and 19 we find:
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Taking into account Eqs. 18–21 in 17 we obtain for the
multipole expansion of Coulomb potential the following
relation:

Table 1 The orbital energies and linear combination coefficients of molecular orbitals for the ground state of
BH3ð 1a1ð Þ2 2a1ð Þ2 1exð Þ2ð1eyÞ2; 1A1Þ

εi "1 ¼ "1a1 "2 ¼ "2a1 "3 ¼ "1ex "4 ¼ "1ey

cp −7.75364476 −0.73431275 −0.52420721 −0.52420700
c1 (ζ=1.18600) 0.00370169 −0.24290487 0.00000000 0.44504937

c2 (ζ=1.18600) 0.00370169 −0.24290487 0.38544838 −0.22252468
c3 (ζ=1.18600) 0.00370169 −0.24290487 −0.38544838 −0.22252468
c4 (ζ=4.67939) 0.00370169 0.18782755 0.00000000 0.00000000

c5 (ζ=1.28808) −0.01919680 −0.59633593 0.00000000 0.00000000

c6 (ζ=1.21066) 0.00000000 0.00000000 −0.56646430 0.00000000

c7 (ζ=1.21066) 0.00000000 0.00000000 0.00000000 0.56649612

c1 (ζ=1.21066) 0.00000000 0.00000000 0.00000000 0.00000000

This work Ref.[11]

Total energy: -26.322082 −26.3377

(17)
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Thus , we have established a large number of different
(α=1,0,–1,–2,…) sets of formulae for the Coulomb
potential produced by a molecule containing any number
of closed and open shells in terms of two-center basic
nuclear attraction integrals and linear combination coef-
ficients for molecular orbitals.

Numerical results and discussion

As an application of formulae 17 for the potential, we
have solved combined HFR equations for the ground state

of BH3ð 1a1ð Þ2 2a1ð Þ2 1exð Þ2ð1eyÞ2; 1A1Þ using STO as a
minimal basis set. All of the multicenter integrals over
STO appearing in the combined HFR equations for BH3

molecule have been evaluated with the help of computer
programs presented in our previous paper [9]. For the
atoms of BH3, we have used the following coordinates:

X Y Z

H1 0 R 0

H2 �
ffiffi
3

p
2 R � R

2 0

H3

ffiffi
3

p
2 R � R

2 0

B 0 0 0 ;

where R=RBH =2.26014098 a.u. The Slater orbitals cp are
denoted as

The results of computer calculations for orbital and total
energies, and linear combination coefficients of molecular
orbitals are presented in Table 1. The data for the screening
constants of STO were taken from Ref. [10]. The results
obtained using minimal basis set of STO agree well with
published data [11] which used RBH =2.25 au as the B-H
distance in BH3.

On the basis of formulae 17 for the potential we have also
constructed the programs taking into account the values of

r 3 4 5 6 7 8 9 10
�

30 1.09905 0.84182 0.67618 0.56310 0.48193 0.42109 0.37388 0.33619

150 1.09905 0.84182 0.67618 0.56310 0.48193 0.42109 0.37388 0.33619

270 1.09905 0.84182 0.67618 0.56310 0.48193 0.42109 0.37388 0.33619

90 1.80365 0.97708 0.70653 0.57076 0.48486 0.42273 0.37494 0.33691

210 1.80365 0.97708 0.70653 0.57076 0.48486 0.42273 0.37494 0.33691

330 1.80365 0.97708 0.70653 0.57076 0.48486 0.42273 0.37494 0.33691

Table 2 The values of Cou-
lomb potential of electric field
produced by molecule BH3

Fig. 2 Dependence of the potential 8 ~rð Þ produced by BH3 on f for
r=5, r=10, θ=900, α=0 and N=5 (a.u.)
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linear combination coefficients given in Table 1. The results
of calculations in atomic units for the potential 8 ~rg

� �
on xy-

plane are presented in Table 2 and Fig. 2. As can be seen
from Table 2 and Fig. 2 the potential is low between H-
atoms of molecule as would be expected from classical
electrostatics. With the help of Eq. 17, the potential of
molecule can also be found in any point of space. Thus, we
have demonstrated the applicability of Eq. 17 to the study of
potential produced by molecule.

Conclusions

A general formula has been established for the Coulomb
potential of electric field produced by an N-electron
molecule at arbitrary positions in space. The purposed
algorithm is especially useful for computation of potential
generated by multielectron molecule containing any num-
ber of open shells. As an example of application, the
general formula obtained has been utilized for the calcula-
tion of potential produced by the ground state of BH3

molecule using minimal basis set of STO. Because BH3

dimerizes rapidly to B2H6, for the RBH distance in BH3 we
employed the corresponding distance (terminal) in dibor-
ane. We notice that the same results can also be obtained

only by the use of extended basis set of GTO [12].
Therefore, the presented theory can be employed as a
practicable alternative to the conventional Gaussian meth-
odology. We are sure that all these features make the
presented analytical model very useful for the study of
interaction between molecules, electron scattering from
molecules and their photoionization and photoluminescence
which require ab initio electron-molecule potential.
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